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Model Inversion Using Bayesian Inference And Genetic Algorithms Part III:
Chemical Potential and Phase Diagram Determination
Brian J. Reardon, MST-6, Los Alamos National Laboratory, Los Alamos, NM 87545

Abstract
The determination of phase diagrams from a minimum number of data sets is

problematic both from the stand point of being an under determined inverse problem

and from that fact that it is also ill-posed.  This arises from the fact that the calculated

composition is a function of temperature while experimentally, both the composition and

temperature are measured observables that contain a significant amount of uncertainty.

In an effort to determine the proper values for the liquidus equations, a genetic

algorithm was used with Bayesian statistics to assist in the analysis of the final

population. The component melting points and the experimentally observed

temperatures were treated as parameters to be optimized within their known uncertainty

limits.  The GA was then able to optimize the heats of fusion of UO2 and BeO to their

experimentally observed values using data collected at temperatures considerably lower

than the melting points of the pure components.  Furthermore, the distribution of final

optimized models were plugged into the forward problem to determine the uncertainty of

the phase boundaries.
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1.0 Introduction

1.1 Inverse and Ill Posed Problems in Materials Science and Engineering

There is an ever increasing need in materials science and engineering to fit the

parameters of models, which are to be used in a predictive capacity, using

underdetermined experimental data sets.  Model inversion of this type falls under the

general category of inverse and ill – posed problems and can often be cast into the

framework of Bayesian statistics (Tarantola, 1987).  Such problems include determining

powder densification models from limited density data, state function determination, and

mechanical threshold strength determination from mechanical tests also with a high

degree of uncertainty.  In all of these examples, model parameters must be optimized

using limited and uncertain data sets that leave the inversion underdetermined.

Likewise, if the models are to be used in a predictive capacity, there is a need to be able

to quantify the expected deviation of the model from reality.

This report shows how a fuzzy logic based multi-objective genetic algorithm (GA)

(Reardon 1999) can be used as a Bayesian Inference Engine (BIE) to evolve a posterior

probability density (PPD) of the model parameter vector space:

Mi = {m1, m2, m3,…, mN}T Eq. 1

where M I is a particular model to be tested, mJ is one of the N parameters used in the

model and T signifies the transpose of the vector.  The GA evolves a set or population

of MI’s which effectively defines the PPD.  Once the PPD has been sufficiently

determined by the GA, parameter vectors are selected and used in the physics of the

forward problem, for future experimental conditions, to evaluate the predictive capacity

of the model.

The problem to be addressed through the use of GA’s and Bayesian inference

lies in the general realm of multiple component phase diagram determination.  From

nuclear fuels to alloy design, understanding, calculation and measurement of phase
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diagrams is the backbone of the structure – property – processing relationship.

Unfortunately, as the materials science community moves towards multi-component

systems (phase diagrams containing 4 or more components) computation becomes

considerably more complex and with this complexity comes an increased concern for

both the accuracy of the models and the effects of experimental error propagation.

There is currently no quantitative way of addressing this issue, and thus, the main

challenge faced by the materials science community is estimating the boundaries of

multiple component phase diagrams given sparse and uncertain experimental data.

This report will show that a multiobjective genetic algorithm (GA) coupled with Bayesian

statistics can more accurately link the limited and uncertain experimental

thermodynamic data to the phase diagram model of interest.

Published experimental thermodynamic information is not absolutely precise but

altered by errors estimated by the author.  These errors are intrinsic to both the method

and to the devices used to do measurements.  Consequently, different sources of

information may provide values laying in a broad domain for the same thermodynamic

function.  A related issue is that the thermodynamic data required for the phase diagram

calculation do not usually form a consistent set of data.  The Gibbs’ free energy

retrieved by integration from the heat capacity dependency with respect to the

temperature may differ from the values that are retrieved from emf experiments or

calculated from the partial pressure of the gaseous phases in the system.

There are a number of other concerns with the experimental verification and

determination of phase diagrams.  First, high temperature experiments are inherently

more uncertain in both temperature and composition.  Additionally, the cost and hazards

of working with materials at high temperature are greater.  Lastly, the formation of

metastable states often occurs causing two problems.  First, the formation of metastable

states experimentally results in an inaccurate equilibrium phase diagram.  Second,

there exists the possibility of unknowingly forming metastable states not predicted under

proper equilibrium conditions.  In either case there is a substantial need to calculate a

phase diagram along with providing at least a qualitative measure of its reliability and
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metastability.  In addition to determining the equilibrium and metastable states, such

calculations can be used as a guide in experimental design to reduce the number of

experiments and to extract as much information as possible from experiments already

conducted.

As an example of the GA’s ability to be used in the calculation of phase

diagrams, consider the simple eutectic diagram of the binary system, UO2-BeO

(Budnikov et al. (1958) and Bergeron and Risbud (1984)).  The liquid phase of this

system closely approximates an ideal solution and thus the Gibbs free energy of the

liquid can be stated as:

∆Gl = RT x l n x+ 1− x( ) l n 1− x( )( ) Eq. 2

where R is the gas constant, T is the absolute temperature, and x is the mole percent of

BeO.  Likewise, it is assumed that solid UO2 and BeO are completely insoluble.

Therefore, the free energy of each component at any temperature is a function of the

difference of the free energies between the solid and liquid phases.  Therefore:

∆GUO2 = Gs
UO2 − Gl

UO2 = −∆Hf ln
TM

UO2

T
Eq. 3

and

∆GBeO = Gs
BeO − Gl

BeO = −∆Hf ln
TM

BeO

T
Eq. 4

With the free energies in hand, the compositions of the liquidus boundary can be found

by using the taunt string method.  In other words, by finding the tangent of Eq. 1 to each

free energy point at x = 0and 1 as defined in Eqs. 3 and 4:

∆Gl xUO2
( ) − ∆GUO2

xUO2
−0

=
∂∆Gl xUO2

( )
∂xUO2

Eq. 5

and

∆GBeO − ∆Gl xBeO( )
1− xBeO

=
∂∆Gl xBeO( )

∂xBeO

Eq. 6
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Solving for XUO2 and XBeO:

xUO2
= 1. − exp

−∆HUO2

RTUO2
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  Eq. 7
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 Eq. 8

Equations 7 and 8 then become the objective functions used in the optimization where

the goal is to find the values of ∆HUO2, ∆HBeO, TM
UO2, and TM

BeO given experimentally

observed values for XBeO at TBeO and XUO2at T  UO2.  While ∆HUO2, ∆HBeO, TM
UO2, and TM

BeO

are experimentally accessible, the temperatures at which the experiments must be

conducted result in a significant amount of uncertainty in their actual values.

Consequently, the goal in this work is to determine the values for ∆HUO2, ∆HBeO, TM
UO2,

and TM
BeO given the low temperature data points of the eutectic phase diagram.  The

main problem with this approach is that even if a large number of data points were

available, the problem would still be underdetermined since x is a function of T and they

both have associated uncertainties.  Thus, to facilitate the optimization, TBeO and TUO2

will also be treated as parameters to be optimized in which their respective search

ranges are the errors associated with their experimental uncertainty.  Consequently, the

optimization problem at hand is multi-objective since numerous data points on the

liquidus can be available and the problem is also multi-variate since the model

parameter vector has the form:

M={∆HUO2, ∆HBeO, TM
UO2, TM

BeO, TUO2…, TBeO…, r}T Eq. 9
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Where TUO2… refers to the fact that there may be many UO2 liquidus data points and

TBeO… refers to the same.  The parameter, r, is a dummy variable incorporated into the

optimization to confirm that the GA is performing correctly and not succumbing to

genetic drift.

In this work the experimentally derived data points will be the eutectic

composition.  Thus, there are two data points: XUO2 = XBeO = 0.68 ± 0.05 and the

parameter search ranges are:  10000 cal/mol ≤ ∆HUO2≤ 30000 cal/mol, 10000 cal/mol ≤

∆HBeO≤ 30000 cal/mol, 3000K ≤ TM
UO2 ≤ 3200K, 2700K ≤ TM

BeO ≤ 2900K, 2423K ≤ TUO2,

TBeO≤ 2463K, and 0.0 ≤ r ≤ 1.0.  The temperature search ranges are obtained from what

is considered to be the uncertainty in the measured values.  The heat of formation

search ranges were intentionally made very broad to emulate the fact that for any

arbitrary system the heats of formation may not be known.

1.2 Bayesian Statistics in Model Inversion
Consider a model parameter vector such as the one defined in Eq. 9 and also consider

a data vector defined as:

D={XUO2…, XBeO…}T. Eq. 10

The goal of Bayesian analysis is to come up with a way of accepting or rejecting a

particular model (M) or hypothesis given an experimental data set (D) and prior

knowledge about the problem.  Thus, in Bayesian statistics, the model or hypothesis is

assigned a probability of acceptance and the total probability distribution function (PDF)

of a series of models being tested makes up what is commonly called the posterior

probability density (PPD).  This goal is achievable through the central tenant of

Bayesian statistics,  Bayes’ Theorem:

σ M | D( ) =
P M,D( )

P D( ) =
P D | M( )P M( )

P D,M( )dM∫
 Eq. 11
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which is essentially the definition of conditional probability.  This rule was first proposed

by Rev. Thomas Bayes and published posthumously in 1763 but has been fairly ignored

up until the last 20 years due to the computational difficulties in evaluating the

probability integrals (Bayes, 1763).  This theorem says that the conditional probability of

a model being correct given a set of data is a ratio of the PDF of M and D to the PDF of

D alone.  The term P(D | M) is not a PDF but a likelihood function.  Thus, while the

individual components of P(D | M) are probabilities, the function itself does not integrate

to 1.0.

Bayes’ rule as written above differs considerably from classical frequentist

statistics because of the dependence of the PPD on the prior PDF, P(M).  P(M) often

contains subjective information about the problem that the experimentalist has a priori.

Another major departure from frequentist statistics is the way the PPD is updated as

new experimental data becomes available.  The frequentist view point is that P(D)

should be considered an unchanging distribution and that it is inappropriate to try to

assign a probability of correctness to a hypothesis.

Consequently, Bayes’ Rule provides the scientist with a tool that classical

statistics is not capable or providing, namely, a mathematical formalization of the

scientific method.  When a phenomenon is observed, a hypothesis explaining the event

is created often with the observer’s own bias and experience in mind.  This hypothesis

is then tested against new experimental data and if the data supports the hypothesis

then the belief in or probability of acceptance of the hypothesis increases.  An excellent

introduction to the Bayesian approach to hypothesis testing can be found in Chapter 4

of Antelman (1997).

The main difficulty in using Bayes’ rule, lays in the evaluation of the denominator:

P D( ) = P D,M( )∫ dM, Eq. 15

where the integral is formally carried over the entire N-dimensional model parameter

space.  The accurate and fast approximation of the integration of these N-dimensional,
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discontinuous PDF’s is the topic of many papers.  Duijndam (1988a, 1988b) discussed

the used of Bayes’ Rule in model inversion and accomplished the above integration by

assuming the PPD had a Gaussian shape then optimized the Gaussian parameters

using least squares.  Unfortunately, most PPD’s are not Gaussian in nature and thus

other techniques were needed.  These techniques include Monte Carlo integration,

Gibb’s Sampling, and genetic algorithms (Sen and Stoffa ,1992, 1996; Sen et al., 1993;

Mallick, 1995; Gerstoft, 1998).

The PPD is itself a difficult function to visualize due to its multidimensionality and

its change with every new experimental data point. However, once the PPD is derived,

regardless of the method, a number of important parameters describing it can be easily

calculated.

The mean model can be calculated using the following formula which is a

standard definition in most statistics books:

M = Mσ M | D( )dM∫ Eq. 16

Likewise, the a posteriori model covariance matrix is given by:

CM = M − M( ) M − M( )T
σ M | D( )dM∫ . Eq. 18

The covariance matrix provides a number of useful parameters.  The standard deviation

associated with the mean model is obtained through the square roots of the diagonal

elements of CM.  Normalization of CM through:

Cij =
Cij

Cii Cjj

 Eq. 20

produces the correlation matrix.
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With CM determined, a principle component analysis (PCA) will provide valuable

insight on how well the GA is converging and what model parameters are most

significant or sensitive.  In PCA the data of the CM is transformed into a new set of axes

of the same number which are orthogonal to each other and are ordered based on the

variance associated with that axis.  The principle components of CM can be obtain by

computing its set of eigenvalues (Λ) and corresponding orthogonal eigenvectors (U)

such that:

CM=UΛUT Eq. 21

is satisfied.  In a d-dimensional variable space there are d eigenvalues or principle

components.  However, many principle components may have small variances and thus

the intrinsic dimensionality of CM is k where k<d.

In the context of a PPD evolved by a GA, PCA is a powerful tool that assists in

overcoming many deficiencies in GA’s.  First, as the GA evolves the population, the

eigenvalues of CM  asymptotically approach limits.  When the rate of convergence

reaches an acceptable minimum the GA can be stopped.  Second, the largest

eigenvalues and their corresponding eigenvectors indicate the most significant variables

or groups of variables in the model given the available data.  Thus, PCA provides a

sensitivity analysis for the variables in the model.

Once a PPD has been determined to be reliable based on the stabilization of the

eigenvalues, an optimum model can be selected.

1.3 Genetic Algorithms in Model Inversion and Parameter Optimization

A detailed account of how a GA operates has been provided elsewhere (Reardon

1998a, 1998b, 1999).  In short, a GA randomly generates a set or population of

parameter vectors Mi’s where i = 1 to N and N is the population size.  This initial

selection, which occurs within parameter ranges set by the user, constitutes the a priori

information used in Bayes’ Theorem.  From this set, parameter vectors that satisfactorily

solve the optimization problem are selected.  The selected members, which are each
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defined by a haploid binary string, exchange string components and thus create new

members.  The bits of the new member’s strings are then randomly flipped with a small

degree of probability from 1 to 0 or vice versa.  The final members are then inserted into

the next generation.  Once the next generation is filled the GA starts over with selection,

crossover and mutation.

Since the GA acts as a BIE in that it uses Bayes’ Theorem to select members in

the population for crossover, the output of the GA is the PPD.  The generation of a PPD

now allows for many of the statistical tools available in Bayesian statistics to be used in

the analysis of the output of the GA.  Namely from the PPD we can derive <M> and CM.

The beauty of this approach is that the PPD can be generated at virtually no extra cost.

Following the method outlined by Sen and Stoffa (1992), a 2-D array of M X B is

reserved where M is the number of parameters and B is the number of values each

variable can take (i.e. the number of bins).  For each model at each generation an

unnormalized PPD, σ(M), is computed and stored in the proper position in the bin array

for each model parameter comprising each model.  At the end of the GA run the model

parameter PPD values are normalized.  Also in a vector of length M, each component of

M σ(M) is stored and summed with the correspond values from the other models.  This

vector provides <M>.  CM is determined by summing up MMT σ(M) in a square array of

MM for each model and at the end of the run subtracting <M><M>T.  The FORTRAN 90

code used to evaluate these quantities was presented previously (Reardon 1999).

Once the PPD, <M>, and CM have been sufficiently determined, the GA can be

stopped and optimal model parameter vectors can be selected and used in the physics

of the forward problem for conditions that have not been experimentally tested.

2.0 The UO2-BeO Liquidus
Figures 1-4 show the evolution of the eigenvalues as a function of generation.

The smallest eigenvalue and thus least significant is shown in figure 1.  Examination of

the first eigenvector in Table I corresponding to the first eigenvalue indicates that this

eigenvector is dominated by the dummy variable incorporated into the optimization to

ensure the proper performance of the GA.  If the GA is performing correctly, then the
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dummy variable should remain random with respect to generation number whereas if

the GA is succumbing to genetic drift, then the random variable will converge to some

value within its search range.  Additionally, since the dummy variable is not used in the

objective functions, its sensitivity should be very low.  If a variable were found to have a

sensitivity lower than the dummy variable, then one could conclude that the value of that

variable has no impact on the model performance whatsoever.

Figure 2 shows two eigenvalues that are approximately two orders of magnitude

larger than that of figure 1.  These two eigenvalues have eigenvectors dominated by the

melting point and eutectic temperature variables.  The next two largest eigenvalues

have eigenvectors also dominated by the melting point and eutectic temperature

variables.  The final two eigenvalues are approximately 4 orders of magnitude larger

than the smallest eigenvalue and are thus the most significant.  These eigenvalues

have eigenvectors dominated by the two heats of fusion and thus one can conclude that

for this optimization, the heats of fusion are the most important variables.  Of course,

the importance of the melting points and the final eutectic temperature should not be

discounted.  In this optimization, the search ranges for the temperature variable were

set to the known experimental uncertainties and, thus one would not expect any real

convergence or sensitivity of these variables within such confined search ranges.

Figures 5-8 show the expectation values for the optimized parameters as a

function of generation.  Figure 5 shows the expectation values for the heats of fusion of

UO2 and BeO.  ∆HUO2 is converging to a value of 23048 cal/mol whereas ∆HBeO is

converging to a value of 16596 cal/mol.  The accepted values for the heat of fusion

according to Bergeron and Risbud (1984) are ∆HBeO =17000 cal/mol and ∆HUO2 = 22900

cal/mol.  Thus the GA has done an adequate job at optimizing the most significant

parameters in this problem given only two low temperature data points.  The

expectation values of the melting points (figure 6), eutectic temperatures (figure 7), and

the dummy variable (figure 8) do not indicate that the population as a whole is

converging to a specific value.  This conclusion is derived from the fact that the average

value for generation 0 and generation 100 do not differ significantly.  However,



12

examination of the standard deviations of the population are necessary to confirm or

deny this assumption.

Figures 9-12 show the standard deviation of the expectation value as a function

of generation for all of the variables.  Again, the heats of fusion are clearly converging

as is evidenced by the standard deviation that has dropped to approximately 10% of the

expectation value.  The standard deviation for the melting points (figure 10), eutectic

temperatures (figure 11), and the dummy variables (figure 12) do not show any sign of

convergence.  Again, this would be expected since these parameters were not deemed

significant in the PCA and since the search range of each variable was set well within

the known experimental uncertainty.

The final figure, figure 13, shows the UO2-BeO eutectic phase diagram calculated

using the evolved PPD.  The scatter shown in the phase boundaries is well within the

know uncertainty of the current phase diagram.  The main difference, of course, was

that this diagram was determined with only two low temperature data points.

3.0 Conclusions

The determination of phase diagrams from a minimum number of data sets is

problematic both from the standpoint of being an under determined inverse problem and

from that fact that it is also ill-posed.  This arises from the fact that the calculated

composition is a function of temperature and both the composition and temperature are

measured observables that contain a significant amount of uncertainty.  In an effort

determine the proper values that go into the liquidus equations, a genetic algorithm was

used with Bayesian statistics to assist in the analysis of the final population.  By treating

the melting points and the experimentally observed temperatures as parameters to be

optimized within their known uncertainty limits, the GA was able to optimize the heats of

fusion of UO2 and BeO to their experimentally observed values using data collected at

considerably lower temperatures.  Furthermore, the distribution of final optimized

models were plugged into the forward problem to determine the uncertainty of the

phase boundaries.
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6.0 Tables
Table I.  The final eigenvectors.

Parameter λ1 λ2 λ3 λ4 λ5 λ6 λ7

∆HUO2 1.0775e-06 0.0013589 -0.00031904 -0.00074791 -0.0029665 0.95527 0.29572
∆HBeO -5.8269e-07 0.0010914 -0.00024326 -0.0026017 -0.00079303 0.29572 -0.95527
TM

UO2 0.00024235 0.17291 -0.024217 0.00031154 -0.98463 -0.0033100 -4.3217e-06
TM

BeO -0.00020423 0.33294 -0.12370 -0.93279 0.061220 -0.0017825 0.0023496
TUO2 -0.00035270 -0.57099 -0.81067 -0.10158 -0.080366 0.00022275 -3.3683e-05
TBeO 0.00050685 0.73022 -0.57177 0.34580 0.14241 -0.00044885 -0.00021896
r -1.0000 0.00054542 1.5508e-05 0.00040168 -0.00015071 1.3600e-07 2.7289e-07
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7.0 Figures

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 20 40 60 80 100

Generation

Figure 1.  The smallest eigenvalue, λ1, as a function of generation.
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Figure 2.  λ2 and λ3 as a function of generation.
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Figure 3.  λ4 and λ5 as a function of generation.
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Figure 4.  The two largest eigenvalues, λ6 and λ7, as a function of generation.
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Figure 5.  < ∆HUO2> and < ∆HBeO> as a function of generation.
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Figure 7.  <TUO2> and <TBeO > as a function of generation.
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Figure 8.  <r> as a function of generation.
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Figure 9.  The standard deviation of  ∆HUO2 and ∆HBeO as a function of generation.
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Figure 10.  The standard deviation of TM
UO2 and TM

BeO   as a function of generation.
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Figure 11.  The standard deviation of TUO2 and TBeO  as a function of generation.
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Figure 12.  The standard deviation of r as a function of generation.
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Figure 13.  The calculated UO2-BeO phase diagram determined from the evolved PPD.
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